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OPERATOR-SPLITTING COMPUTATION OF TURBULENT FLOW 
IN AN AXISYMMETRIC 180" NARROWING BEND USING 

SEVERAL k-& MODELS AND WALL FUNCTIONS 

x.-L. LUO 
CSIRO Division of Mathematics and Statistics, Locked Bag 17, North Ryde, N.S. U! 2113, Australia 

SUMMARY 
This paper describes a finite element implementation of an operator-splitting algorithm for solving 
transient/steady turbulent flows and presents solutions for the turbulent flow in an axisymmetric 180" narrowing 
bend, a benchmark problem dealt with at the 1994 WUA-CFD annual meeting. Three k-c based models are used: 
the standard linear k-c model, a non-linear k-c model and an RNG k--E model. 

Flow separation after the bend, as observed in the experiment, is predicted by the RNG model and by both the 
linear and non-linear k-c models with van Driest mixing length wall functions. Good agreement with experimental 
data of pressure distribution on bending walls is obtained by the present numerical simulation. Results show that 
there is very little difference between the linear and non-linear k-c models in terms of predicted velocity fields and 
that the non-linearities mainly affect the distribution of turbulent normal stress and pressure, in analogy to the 
effect of second-order viscoelastic fluid models on laminar flow. Both the linear and non-linear k-c models fail to 
predict any flow separation if logarithmic wall functions are used. 
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1. INTRODUCTION 

In the last decade or so, the impact of the finite element method (FEM) upon the numerical modelling of 
turbulent flows of industrial complexity, a field traditionally dominated by finite difference/finite 
volume techniques, has been increasing steadily. ' Overcoming some of the earlier difficulties associated 
with applying the FEM to turbulent flow, a large range of turbulent flow problems have been solved 
successfully by a variety of finite element 

Since the original version of the k--E model was developed by Launder and co-workers in 1972, '2713 it 
has been most widely used by engineers and scientists for the solution of practical problems. Avariety of 
modified versions have been proposed to improve the performance of the model, among which are the 
renormalization group (RNG)-based models'"'' and the non-linear k-c models.20321 The RNG method 
describes the complex dynamics of turbulence in terms of so-called 'coarse-grained' equations of 
motion governing the large-scale, long-time behaviour of the physical system; it gives a theory of the 
Kolmogorov equilibrium range of turbulence, especially the inertial range of small-scale eddies. The 
latest version of the RNG model proposed by Yakhot and co-worker~, '~~~'  which incorporates a 
modification of the production-of-dissipation term to account for non-equilibrium strain rates will be 
used in the present study. 
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The non-linear k--E model proposed by Speziale2' has a structure similar to that of a Rivlin-Ericksen 
fluid, which is a second-order viscoelastic model and is used to describe flows of dilute polymer 
 solution^.^^*^^ This non-linear k--E model overcomes the inability of the standard k--E model and all its 
linear variations to predict normal stress difference, which is a common feature of Newtonian turbulent 
shear flow and non-Newtonian laminar shear flow. The inability of the linear k--E model to predict 
normal stress difference makes it impossible to describe effects such as secondary flows in non-circular 

The non-linear k--E model was subsequently applied to the backward-facing step problem, 
yielding better results than those of the linear k--E 

One of the benchmark problems at the 1994 annual meeting of the World User Association in Applied 
Computational Fluid Dynamics (WUA-CFD '94) was the turbulent flow in an axisymmetric 180" 
narrowing bend ('bend problem' for short). A schematic diagram of the basic geometry and flow field is 
shown in Figure 1 (see Section 4). Although there are no sharp comers in the geometry, the bend 
problem appears to be more difficult than the flow over a backward-facing step. One major question is 
whether the flow separation after the bend, as observed in the experiment, can be predicted by a k-& 
model. In the backward-facing step problem, numerical modelling can always predict a recirculation 
behind the step and the concern there is only how large the recirculation should be. The sharp step and 
high flow inertia 'force' the initial formation of recirculation and the detachment point is fixed at the step 
comer. In the bend problem, however, a balance among pressure, inertia, viscous and turbulent stresses 
will determine whether there is a flow separation and the position of the detachment point is unknown if 
there is a flow separation. A high pressure gradient normal to the bending wall makes some universal 
wall functions totally unsuitable in that region. 

Does the standard k--E model predict separation for the bend problem? The answers to this important 
question from some of the well-known commercial CFD codes presented at WUA-CFD '94 are 

FLUENT and FLOW3D concluded that the standard k--E model predicted no separation, 
while FIDAP did predict separation with the standard k--E model. Both FLUENT and FLOW3D 
predicted flow separation with an RNG-based k--E model. 

Another question to ask is how the RNG model and the non-linear k--E model would perform in the 
bend problem in comparison with the standard k--E model and with experimental data. This question can 
only be partially answered here, since there are insufficient experimental data such as turbulent stress 
field available for a detailed comparison. However, a comparison of this kind still reveals some 
interesting aspects of these three models. 

2. GOVERNING EQUATIONS 

For the turbulent flow of an incompressible viscous fluid the Reynolds-averaged Navier-Stokes 
equation and continuity equation are given by 

au 
p- + p(u .V)u + vp - pv2u = V.?, 

at 

where p is the fluid density, u is the mean velocity, p is the mean pressure, p is the dynamic viscosity of 
the fluid and 7 is the Reynolds stress tensor whose components are given by 

7.. rl = -pv.v. ' I'  (3) 

where v is the fluctuation part of the velocity 
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For achieving closure, equations relating the Reynolds stress tensor to the global history of the mean 
velocity field are needed. For the k--E based model of turbulence the Reynolds stress tensor is expressed 
as a tensor function of mean velocity u, turbulent kinetic energy k and turbulence dissipation rate E .  

2.1. Standard linear k-E model 

The standard linear k-E is of the form 

zi j  = - { p k d o  + 2ptDV, 

where 
1 

k = --zi;, 
2P 

k2 
Pt = PCp;. 

(7) 

are the turbulent kinetic energy, turbulent viscosity and mean rate-of-strain tensor respectively. For an 
incompressible flow the Gij-term in (4) is pressure-like and makes no contribution to turbulence 
generation. 

The transport equations for k and E at high Reynolds numbers are given by 

ak - + ( u . V ) ~ - V .  
at 

a& -+ (u*V)E - V .  
at 

where uo = p / p  and u, = pt /p  are the kinetic viscosities and G is the turbulent generation term 

The five constants have the following commonly used values: 

cp c1 c2 uk OE 

0.09 1.44 1.92 1.0 1.30 

(9) 

In general the k-E model is only valid in fully turbulent regions. Close to a solid wall, viscous effects 
become dominant and a special treatment is required in order to obtain realistic numerical predictions. 
In this study the simple but efficient effective viscosity wall function approach will be taken. Two 
different sets of wall functions will be used here. The following single-layer log-wall model has been 
widely used in control-volume-based CFD 

Y f - - P  gC:.25k0.S/p, (1 1) 
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where 6 is the normal distance to the wall, E = 9.79 and IC = 0.41 9 for smooth walls.31 The above one- 
layer lon-wall model will be denoted as WFl for convenience. WF1 essentially specifies an effective 
viscosity derived from a logarithmic velocity profile. 

Also adopted in this study is the van Driest" mixing length approach, which will be denoted as WF2, 
in which the turbulent viscosity in the equilibrium wall layer is modelled as 

where 1, is the mixing length. For smooth walls, 1, is obtained from van Driest's equation 

1, = 1~6[l  - exp(-y+/A)], (15) 

in which A is an empirical constant assuming the value of 26 for smooth walls. The exponential damping 
function in the van Driest mixing length progressively suppresses the mixing length as y+ diminishes. 

The wall functions are applied within the special wall layer elements, with the k-E equations being 
solved only in the region excluding the viscous sublayer. 

2.2. Non-linear k-E model 

The non-linear k-E model of Speziale2' can be described as 

t- Y = -2 3p k6, + pk'f21tD, + 4CDpl,"(D,Dmj - iD,,Dm,6,) + 4CEp1,"(b, - &,,,6,), (16) 

where 

D, is the strain rate tensor and b, is its Oldroyd derivative 

The two extra constants C,  = C, = 1.68. The transport equations for k and E are the same as the 
linear model, except that the generation term expressed in (10) has to be replaced by a more general 
form of the product of stress and strain rate, 

where t, is given by (1 6). Again all the G,-terms in z, are pressure-like and make no contribution to the 
generation of k and E in an incompressible flow. 



TURBULENT FLOW IN AN AXISYMMETRIC NARROWING BEND 1193 

Care must be taken to include correctly the extram terms involving u/r for zii in an misymmetric 
flow. The misymmetric component form of the Oldroyd derivative is given by 

from which the components of the non-linear turbulent stress tensor can be readily worked out. 
The presence of the Oldroyd derivative makes the non-linear k--E model bears a certain resemblance 

to the Rivlin-Ericksen fluids of viscoelastic flow and we will see some similar effects on the velocity 
and pressure fields. Like its linear counterpart, the non-linear k--E model also needs wall functions in 
near-wall regions. 

2.3. RNG k--E model 

Yakhot and co-workers have recently proposed the RNG-based k--E model 17,19 

ak 
- + ( u * V ) k - V .  
at 

a& -+ (u'V)E - V .  
at 

where R is an extra strain rate term given by 

CPV3(1 - 1 1 / r l o ) E 2  
(1 + P0r13)k ' 

= - k [ (- aui + -) auj -1 aui 
E axj axi axj 

R =  

with 

0.5  

The constants used for the new RNG model are as follows: 

CP c, c2 Qk C6 Po I10 

0.0845 1.42 1.68 0.7179 0.7179 0.012 4.38 
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The total turbulent stress has the same expression as the linear k-& model given by (4). Comparing 
with the linear k-e model, this RNG model has different constant values and an extra strain rate term in 
the &-equation. It also has a single turbulent viscosity expression which is valid across the full range of 
flow conditions from low to high Reynolds numbers." 

3. NUMERICAL ALGORITHM 

3.1. Operator splitting 

The operator-splitting method treats non-linearity and incompressibility in the Navier-Stokes 
equations separately at different fractional time The method is suitable for both steady 
and transient problems and can readily be extended to include extra equations describing additional 
physical effects such as heat transfer and turbulence. 

The following segregated time-stepping scheme is used to solve the coupled non-linear system of the 
k--E turbulence model. 

(1) Solve for k"+' and &"+I by a semi-implicit method using a GMRES iterative solver: 

Similar algorithms can be used for the non-linear and RNG k-& models. 
(2) Update the turbulent viscosity q+' and extra turbulent stresses in the case of the non-linear k-E 

model. Since the GV-term can be absorbed in the pressure for incompressible flow, the linear and 
RNG k--E models can be treated purely as variable viscosity models and the pressure-like term 
needs to be computed only when recovering the real pressure. We define the extra turbulent 
stress SU for the non-linear k--E model as the difference between the total stress and the linear 
model contribution, 

which is explicitly computed at every time step for the non-linear model. 

three fiactional 

first fractional step 

(3) Solve for u"+I and p"+' the Reynolds-averaged momentum equations by operator splitting in 

u"+e - ,," 
8At 

- a v  * (""VU"+O) + vpn+e = gv (U"VU") - (u" - V)U" + v * [V"(VU")T] + v - S", 

(32) 
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second fractional step 

third fractional step 
un+l - ,,n+I-B 

- a v  - (V"VU"+') + vp"+l 
BAt 

0, (36) V.Un+l = 

where v" = u,, + $ is the total viscosity at the nth time step. The extra stress term V - S" is only for the 
non-linear k-e model. 

The subproblems at the first and third fractional steps are identical and are of the type of steady Stokes 
problem with variable viscosity: 

a, u - V - ( v 1  Vu) + BVp = F, , (3 7) 

v * u  = 0,  ( 3 8 )  
with a1 = l / A t  and u1 = aeu. 

convection problem: 
The subproblem at the second fractional step is of the type of classical non-linear diffusion- 

a,u - v - ( u , v u )  + (1 - ~ B ) ( ~ . V ) ~  = F,, (39) 
with u2 = p(1 - 2 0 ) ~ .  

In the above scheme, a, B E (0, 1), a + fl = 1 and 0 E (0 , f ) .  A good choice for 8 was found34,35 to be 
1 - 1 / 4 2 .  The value of a and fl  are chosen in such a way that u1 = u2 is satisfied to yield identical 
Helmholtz operators at all fractional steps, which contributes considerably to the overall efficiency of 
the operator-splitting algorithm. 

The Stokes problem is solved by a preconditioned conjugate gradient method. The non-linear 
difision-convection problem is first reformulated as a least squares problem and then solved by a 
preconditioned conjugate gradient method. This scheme reduces the solution of the Navier-Stokes 
equations to solving a sequence of scalar Dirichlet problems associated with the Helmholtz operator and 
the NeuIllann problems associated with the Laplacian operator. The matrix associated with the 
Helmholtz operator is well conditioned for all Reynolds numbers, since al = l/At. More details on 
the algorithm of operator splitting and preconditioned conjugate gradient iterations are given by 
Glowinski and c o - ~ o r k e r s . ~ ~ " ~  

3.2. Finite element implementation 

The variational form of the above numerical system is discretized with Galerkin finite element 
procedures. Eight-node quadnlateral elements are used for velocity, k and E ;  four-node linear elements 
are used for pressure. Integration by parts (IBP) is done for all the diffusion terms. IBP on the extra 
stress divergence terms for the non-linear k--E model results in extra boundary integrations for the 
momentum equation, which have to be explicitly computed on boundanes where stress-type conditions 
are imposed. 
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The entire code is expressed in a special high-level language called Fasttalk, which is a unique feature 
of F ~ s t f l o , ~ ~  a general-purpose finite element CFD package under development at the CSIRO Division 
of Mathematics and Statistics in Australia. Fastflo contains no physical assumptions nor mathematical 
algorithms; it purely supports Fasttalk language, assemblies and solves finite element equations as 
programmed by Fasttalk. Resembling a general partial differential equation solution environment, 
Fastflo also provides facilities for special applications such as turbulence modelling. For example, the 
turbulent generation term G can be conveniently computed using Fasttalk's special provisions. 
Interested readers can find more information on Fastflo and Fasttalk in Reference 37, where a World 
Wide Web site has also been given. 

4. RESULTS AND DISCUSSION 

4.1. Geometry and boundary conditions 

A schematic diagram of the flow field is shown in Figure 1. The geometry contains a circular inlet 
section with radius R,  = 4.5 cm, followed by a narrowing 180" bend and an annular outlet with gap 
R, = 1.88 cm. The gap between inlet and outlet is D, = 1.22 cm. The broken line in Figure 1 is the 
axis of symmetry and the thick full lines represent solid walls. The narrowing bend can be described by 
the internal and external boundary bending curves. The internal bending curve is a perfect semicircle 
with diameter D,. The external bending curve is quite complicated; it consists of several piecewise arcs 
specified by about 18 length and angle parameters. Exact details of the geometry can be found in the 
WUA-CFD Test Case 1/93 description sheet.38 Figure 2 shows the finite element mesh used in the 
calculations. 

The Reynolds number based on inlet uniform velocity uin is 

Re = puinDin/p = 286,000. 

L r  
Figure 1. Schematic diagram of turbulent flow in an axixymmetric narrowing bend 
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Figure 2. Finite element mesh for the bend problem, with 5054 nodes 

In dimensionless form we let uin = 1, inlet pipe diameter Din = 2R, = 9, fluid density p = 1 and 
to obtain the correct Reynolds number. The inflow boundary viscosity p = 3.146853 x 

conditions for k and E represent a turbulent intensity Z, of 10%: 

(0 ~ 09)0.75 (kin) .5 

0.07(0/2) . E h  = 2 ki, = $(uhZt) , 

A range of values of kin and eh have been used in the literature and for most modelling applications the 
predictions have been found to be insensitive to these values. The outflow has a normal stress boundary 
condition, assuming a fully developed outflow. The contribution to the boundary integration by the non- 
zero normal stress of the non-linear k-e model has to be explicitly computed. 

On solid walls, a no-slip velocity BC applies. The solution domain fork and E excludes the wall layer 
elements and boundary conditions for k and E are imposed on top of the ‘inner’ domain. A Neumann 
boundary condition on k and a Dirichlet boundary condition on E are imposed: 

ak &Z------. G 75k1’5 - = 0, 
an KS 

On the outlet boundary we have 
a& ak 

an an 
= 0, - = 0. - (43) 

Over the entire domain the initial conditions are zero for velocity and pressure and the inlet values for 
k and E .  The initial turbulent viscosity is computed from the initial values of k and e. The RNG model 
uses a single viscosity functions throughout the entire region without any ad hoc wall damping 
functions. 

4.2. Solution strategv and convergence 

The segregated time-stepping scheme described in Section 3 was carried out for all three models. The 
time step value At was automatically adjusted according to the convergence performance of the 
preconditioned conjugate gradient (PCG) iterations in operator splitting for the N-S equations. If the 
number of iterations taken by PCG in one of the fractional steps exceeded 20, the time step was 
automatically reduced by half, and if the number of iterations was less than 10, the time step was 
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increased by 20%. The time step was also reduced by half if the time derivative of velocity increased 
from the previous time step, i.e. if the ratio of time derivatives in the last two consecutive time steps 
exceeded unity. This seemed to work very well in balancing between stability and efficiency of the time- 
stepping runs. The initial time step was set to 0.01 dimensionless time unit. Steady state was considered 
to be reached when all the relative time derivatives of velocity, pressure, k and E satisfied 

where v"+' and v" represent solutions for any one of the above-mentioned variables at two consecutive 
time steps. The norm Iv( is defined as 

in which vi denotes the ith node point value. 
It was found that except for some isolated time steps the time derivative 0 monotonically decreased 

from l/At = 100 at the first time step to below when steady state was reached. Consistent with this 
stable time stepping, the automatically adjusted time step value increased monotonically. However, in 
order to minimize or even eliminate the effect of possible negative values of k and E, we found it 
necessary to limit the maximum time step value, since the number of negative points and the magnitude 
of negative values seemed to be in proportion to the magnitude of time steps. In this study we found it 
satisfactory to limit the maximum time step value at 0.1. Nodal value clipping was still necessary when 
some isolated negative values of k or E (very small in magnitude owintg to small time steps) occurred in 
the solutions. 

Since the time step value was 0.1 when reaching steady state, the criterion specified in (44) 
corresponds to the relative change in solution being less than The entire solution strategy 
described above was carried out automatically by the Fasttalk code; no user interference was necessary. 

SUPG-type upwinding was applied to the k- and c-equations and the momentum equation. The 
convergence criterion for the GMRES iterative solver used for the k- and c-equations was to let the 
preconditioned residual be less than 10W7. 

4.3. Calculations with WFl 

The logarithmic effective viscosity wall function (WFl) was first used for both the standard linear and 
non-linear k-& models. The calculations predicted no separation. This is the same conclusion reached in 
several reports at WUA-CFD '94, including FLOW3D and FLUENT.27,28939 On the other hand, several 
other reports, including FIDAP's, at the same meeting concluded that the standard k-& model does 
predict flow separation for this We will discuss more about this controversy after the next 
subsection. 

4.4. Calculations with WF2 

Using the van Driest mixing length wall function (WF2), calculations for both the linear and non- 
linear k-E models predicted flow separation without any difficulty. Figures 3 and 4 show contours of the 
solutions for the linear and non-linear k-e models respectively. 

Now it is clear that whether the standard k-e model can predict flow separation in this benchmark 
problem depends on what wall functions are used, sinc,e the only difference in our calculations with 
WF1 and WF2 was in the wall functions. This was also evident from two  report^^^'^^ at WUA-CFD '94 
which actually stated what kinds of wall functions were used. One used logarithmic wall functions and 
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Figure 3. Contour plots for linear k-c model with WF2. Clockwise from top left: streamline, pressure, E and k 

1199 

Figure 4. Contour plots for non-linear k--E model. Clockwise from top left: streamline, pressure, E and k 
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failed to predict flow the other used essentially the same wall fhctions as WF2 used here 
and predicted flow It is not known to the author what kinds of wall functions were used 
in the other studies presented at WUA-CFD '94. 

The complete failure of WF1 to predict flow separation is probably due to its complete inadequacy in 
regions where there is a large pressure gradient normal to the wall and the logarithmic velocity profile 
assumption is totally invalid there. On the other hand, the van Driest mixing length approach does not 
necessarily impose a logarithmic velocity profile in the near-wall region. 

Since the initial conditions for all variables are artificially imposed, they did not represent a true 
physical state of the flow (e.g. zero velocity with non-zero k and E) ,  which, we found, caused a severe 
instability in the non-linear k-E model at early time steps: the time derivative term in the Oldroyd 
derivative aD,/Gt contributed to a strong negative generation of k and E at early time steps. This transient 
term was then omitted, since we were only interested in the final steady state solution, and the 
calculation became stable without this term. 

4.5. Calculations with IWG model 

The RNG model also predicted flow separation without any difficulty. Figure 5 shows contour plots 
of the RNG model solutions. In fact, all RNG-based calculations reported at WUA-CFD '94 predicted 
flow separation. Like the van Driest mixing length treatment, the RNG model does not impose a 
logarithmic velocity profile in near-wall regions, since it uses a single viscosity function throughout the 
entire region. 

Figure 5.  Contour polts of RNG k-.z model solutions. Clockwise from top left: streamline, pressure, E and k 
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Table I. Flow separation details; y is the detachment angle 
and L, is the recirculation length, as shown in Figure 1 

Model Y Lr 

1201 

~~~~ 

Linear k-E 78" 4.02 
Non-linear k-E 79" 4.08 
RNG k-E 67" 3.63 

4.6. Comparison of results with experiment and between models 

Flow separation. The position of the detachment point 'd' is specified by the angle y as shown in 
Figure 1. The recirculation length L, is defined as the vertical distance between the centre of the inside 
bend (the semicircle) and the reattachment point 'r', also defined in Figure 1. Table I compares the flow 
separation details predicted by the three k--E models. The shortest recirculation was predicted by the 
RNG model. The difference between the linear and non-linear k--E models is very small in terms of 
separation details. It is interesting to note that a longer recirculation appears to be associated with a 
later detachment position (larger angle 7). Unfortunately, there are no experimental data on flow 
separation available for a detailed comparison. 

As pointed out earlier, the non-linear k--E model bears a certain resemblance to the Rivlin-Ericksen 
second-order model of viscoelastic flow. It is very interesting to note that there is very little difference in 
predicted velocity fields between the linear and non-linear k--E models, despite the fact that the non- 
linear k--E model yields quite complicated extra turbulent stresses as defined in (3 1). This seems to be 
analogous to the effect of second-order viscoelastic fluid models on laminar flow. In the case of laminar 
flow it has been proved4' that under certain conditions the velocity field predicted by the second-order 
viscoelastic model remains exactly the same as that of a Newtonian flow and the non-linearities in the 
constitutive equations affect only the distribution of normal stress and pressure. However, for the 
classical problem of turbulent flow over a backward-facing step, Speziale and co-workers 
that the non-linear k--E model predicted a longer recirculation length than the linear model and this was 
confirmed by our own calculations4ur code predicted the recirculation length to be 6.35 for the linear 
and 6.56 for the non-linear k-& model using van Driest mixing length wall functions. 

Pressure distribution. Experimental data of pressure distributions on both internal and external 
walls were provided by Daimler B e n ~ . ~ ~  The normalized pressure coefficient is defined as 

where poO is the pressure at the entrance to the bend. The pressure data are measured as a function of 
dimensionless arc length s, starting and ending at the following points (normalization constant 
so=9 cm). 

On the inside wall: s = 0 at 7.4 cm behind the inflow plane and s = 1 at 7.4 cm before the outflow 
plane. With this definition of s, the value of s at the beginning of the inside wall bend (the semicircle) is 
0.393 and it is 0.606 at the end of the semicircle, which means that the detachment points of flow 
separation shown in Table I are located at about s = 0.5. 

On the outside wall: s = 0 at the starting point of the rigid wall on the symmetry axis @oint A in 
Figure 1) and s = 1.3201 10 at 9.54 cm before the outflow plane. 

Figure 6 shows the outside wall pressure distribution curves predicted by the three k--E models in the 
present study together with the experimental data. For a comparison, FIDAP's  prediction^^^ at 
experimental points are also plotted. As seen in Figure 6, unlike the situation of the velocity field, 
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I 
0.0 0.5 1 .o 1.5 

Arc-length S 

Figure 6. Outside wall pressure coefficient as a h c t i o n  of normalized arc length: - - -, linear k-c model; -, non-linear k-c model; 
. . . , RNG model; 0, experiment:2 A, FIDAP2' 

the difference in pressure distributions between the linear and non-linear k--E models is much more 
pronounced as expected. On the whole the agreement of our predictions with experiment is good and the 
RNG and non-linear models gave slightly better predictions than the standard linear k-& model. 

The comparison of pressure data on the inside wall presented in Figure 7 shows a large discrepancy 
between all numerical predictions and experiment in the high-pressure-gradient region near the 
beginning of the inside bend (see also the pressure contours), with a large negative pressure peak in 
all numerical results. This large discrepancy indicates the need for better models or wall treatment in 
these kind of situations where no universal wall functions exist. Among the four predictions, the RNG 
model, which uses uniform viscosity expression, has the least discrepancy with experiment in the 
pressure peak region. Since experimental measurements were made only at a few points, much coarser 
than the computational nodes, the question as to whether the experimental points simply missed the 
negative pressure peak region remains to be answered. However, in any case the numerically predicted 
negative pressure peak seemed to be at least too wide, and the magnitude possibly too large, judging 
from the available limited number of experimental points. 

Y Y  
0.0 0.2 0.4 0.6 0.8 1.0 1 

Arc-length S 
2 

Figure 7. Inside wall pressure coefficient as a function of normalized arc length: - - -, linear k-c model; -, non-linear k-c model; 
. . . , RNG model; 0,  experiment:' A, FIDAF9 
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Apart from the negative pressure peak region, the agreement between our predictions and experiment 
on the inside wall is satisfactory. Unlike the situation on the outside wall, on the inside wall the RNG and 
non-linear k--E models did not seem to do any better than the standard linear k-& model, which may be 
attributed to the fact that the dominant influence on the inside wall is the high pressure gradient normal 
to the wall and all models failed there. The effect of a high pressure gradient on the outside wall is much 
less than on the inside wall, as is evident from all pressure contour plots in Figures 3-5. 

Comparing pressure distributions between the linear and non-linear k--E models in Figure 7, one 
notices there is little difference before s = 0.5, which is about where the flow separation starts. Before 
the separation the flow is basically a fully developed shear flow and the normal stress difference 
predicted by the non-linear k--E model does not affect the pressure distribution, similar to the situation of 
non-Newtonian laminar shear flow where a second-order fluid model predicts a non-zero normal stress 
difference but does not affect the pressure distribution. Downstream close to the outlet, the flow recovers 
to become a hlly developed shear flow again and the pressure distribution curves predicted by the linear 
and non-linear models become parallel to each other, which shows that there is little non-linear effect on 
the pressure distribution (or the pressure gradient) downstream, the same as upstream before the flow 
separation. 

5. CONCLUSIONS 

A robust operator-splitting time-stepping algorithm for steady or transient turbulent flow has been 
implemented with finite elements using the unique Fasttalk language. Linear, non-linear and RNG- 
based k--E models have been incorporated into the segregated time-stepping scheme. 

The WUA-CFD benchmark problem of turbulent flow in an axisymmetric narrowing bend is solved 
with the three k-& models and two different sets of wall functions. Calculations show that the operator- 
splitting time-stepping algorithm is very efficient, robust and stable. The usual problem of negative 
values of k and E can be either completely avoided or minimized in the semi-implicit time-stepping 
scheme by limiting the magnitude of time steps. 

The RNG model predicted flow separation without any difficulty; the linear and non-linear k--E 
models failed to predict separation with a logarithmic profile one-layer wall function but succeeded with 
the van Driest mixing length wall function. This gives a clear explanation of why some reports at WUA- 
CFD '94 concluded that standard k--E does not predict separation while others at the same meeting 
reached the opposite conclusion. Different groups at WUA-CFD '94 used different wall functions, but 
the present work has demonstrated that, with everything else the same, different wall functions can make 
the difference between complete failure and success in predicting flow separation for the WUA-CFD 
benchmark problem. 

There is very little difference between the linear and non-linear k-& models in terms of predicted 
velocity fields and the difference in predicted distributions of turbulent normal stress and pressure is 
much more pronounced, in analogy to the effect of second-order viscoelastic fluid models on laminar 
flow. 

The comparison of predictions with experimental data on pressure distribution on solid walls shows 
good overall agreement, except in the high-pressure-gradient (normal to the wall) region near the 
detachment point on the inside wall. The large discrepancy between all predictions and experiment in 
the high-pressure-gradient near-wall region highlights once again the failure of using universal wall 
functions in non-universal flow regions and the need for better wall treatment in general. 

Further work needed is to explore the use of better near-wall models,'' low-Reynolds-number 
 modification^'^ and other considerations such as the effect of curvature.4345 
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